Compatibility Tester

Compatibility Tester historical background

In earlier 1987 Victor Gashpar started scientific research of compatibility between people.

In 1990 the team started to grow when it became evident that artificial intelligence can be used in determining psychological compatibility between people.

We started to experiment with different mathematical methods.

As of today more than 30 thousand stories of relationships where  collected and studied from all around the world.

In 2001 we made two revolutionary discoveries :

- compatibility  can be predicted with modern mathematical tools.

- age difference is a very important factor in compatibility.

After that we concentrated on collecting more data to have possibility to make more and more precise analysis.

These stories were calibrated by our team depending on their outcome, strength of soul connection, intensity of passion, ability of understanding in verbal communication, longevity of relationship.

Our study covered different stories, starting from lifelong happy marriages till short love stories, where people literally killed each other after several years of relationship.

Scientific background

The mathematical tool we are using is the most sophisticated tool today for analyzing data - artificial neural networks.

This mathematical tool is used today in weather prediction, face recognition etc.

We are the pioneers to use this tool for recognition the hidden layers of  energies between two people.

Artificial neural networks are similar in structure to human brains:

They can be trained on cases with known results and later used for prediction.

Also they can show what is important in a set of information and what is not.

The most difficult part in using neural networks is properly train them.

We are the first to succeed to train them on compatibility prediction using our collected stories with known outcome !

Neural networks also showed us, that from all available data about persons - blood formula, color of eyes, their age difference is the most important for unfolding the hidden problems in relationship.

This is confirmed by other scientists also ( see below Young, J. A., Critelli, J. W., & Keith, K. W. (2005), Buunk, B. P., Dijkstra, P., Kenrick, D. T., & Warntjes, A. (2001) )

Why it is possible to determine compatibility of two people by their age difference?

Because all develops in cycles. If cycles of two people are in phase, they are amplifying each other.

If, for example, sensual developments between any two people are in synchronization, they are on the same “wave”. And this makes them sensually compatible. We give you here very simple explanation just for your understanding. Definitely all this is much more complex.

We are proud have a team of prominent scientists. More about our team here.  

Our research and application of Artificial Intelligence, Neural networks and Machine learning  is based on following publications ( including our's):

Baćak, V. & Kennedy, E. H. (2018). Principled machine learning using the Super Learner. Sociological Methods & Research, (January),

1–24. doi:10.1177/ 0049124117747301

Back, M. D., Stopfer, J. M., Vazire, S., Gaddis, S., Schmukle, S. C., Egloff, B., & Gosling, S. D. (2010). Facebook profiles reflect actual personality, not self-idealization. Psychological Science, 21 (3), 372–374. doi:10.1177/0956797609360756

Bishop, C. M. (2007). Machine Learning and Pattern Recoginiton. New York, NY: Springer.

Breiman, L. (2001). Statistical Modeling : The Two Cultures. Statistical Science, 16 (3), 199–231.

Cohen, J., Cohen, P., West, S. G., & Aiken, L. S. (2003). Applied multiple regression/correlation analysis for the behavioral sciences (3rd.). New York: Psychology Press.

Csáji, B. (2001). Approximation with artificial neural networks. MSc. thesis, 45. doi:

Dwyer, D. B., Falkai, P., & Koutsouleris, N. (2018). Machine learning approaches for clinical psychology and psychiatry. Annual Review of Clinical Psychol- ogy, 14, 91–118. doi:10.1146/annurev-clinpsy-032816-045037

Gates, K. M. & Molenaar, P. C. M. (2012). Group search algorithm recovers effective connectivity maps for individuals in homogeneous and heteroge- neous samples. NeuroImage, 63 (1), 310–319. doi:10.1016/j.neuroimage.2012.06.026

Glorot, X., Bordes, A., & Bengio, Y. (2011). Deep sparse rectifier neural networks. Proceedings of Machine Learning Research, 15, 315–323. doi: arXiv: 1502.03167

Gosling, S. D., Augustine, A. A., Vazire, S., Holtzman, N., & Gaddis, S. (2011). Manifestations of personality in online social networks: Self-reported Facebook-related behaviors and observable profile information. Cyberpsy- chology, Behavior, and Social Networking, 14 (9), 483–488. doi:10.1089/ cyber.2010.0087

Huang, H., Cao, B., Yu, P. S., Wang, C. D., & Leow, A. D. (2018). DpMood: Exploiting local and periodic typing dynamics for personalized mood prediction. Proceedings of the IEEE International Conference on Data Mining, 2018-Novem, 157–166. doi:10.1109/ICDM.2018.00031

Iliev, R., Dehghani, M., & Sagi, E. (2015). Automated text analysis in psychology: methods, applications, and future developments. Language and Cognition, 7 (2), 265–290. doi:10.1017/langcog.2014.30

Jarrett, K., Kavukcuoglu, K., Ranzato, M., & LeCun, Y. (2009). What is the best multi-stage architecture for object recognition? Proceedings of the IEEE International Conference on Computer Vision.

Jiang, Y., Bosch, N., Baker, R. S., Paquette, L., Ocumpaugh, J., Andres,J. M. A. L., . . . Biswas, G. (2018). Expert feature-engineering vs. deep neural networks: Which is better for sensor-free affect detection? In- ternational Conference on Artificial Intelligence in Education, 198–211. doi:10.1007/978-3-319-93843-1_15

Kosinski, M., Stillwell, D., & Graepel, T. (2013). Private traits and attributes are predictable from digital records of human behavior. Proceedings of the National Academy of Sciences, 110 (15), 5802–5805. doi:10.1073/pnas.1218772110

Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). ImageNet classification with deep convolutional neural networks. Advances in Neural Information Processing Systems, 1097–1105.

Kutner, M., Nachtsheim, C., Neter, J., & Li, W. (2004). Applied linear statistical models (5th ed.). McGraw Hill.

Landers, R. N., Brusso, R. C., Cavanaugh, K. J., & Collmus, A. B. (2016). A primer on theory-driven web scraping: Automatic extraction of big data from the Internet for use in psychological research. Psychological Methods, 21 (4), 475–492.doi:10.1037/met0000081

LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. Nature Methods, 521 (1), 436–444. doi:10.1038/nmeth.3707

Lu, Z., Pu, H., Wang, F., Hu, Z., & Wang, L. (2017). The expressive power of neural networks: A view from the width. Conference on Neural Information Processing Systems. Retrieved from

Marcoulides, G. A., Ing, M., & Hoyle, R. (2014). Automated structural equation modeling strategies. In Handbook of structural equation modeling (Chap. 40, pp. 690–704).

Marcus, G. (2018). Deep learning: A critical appraisal, 1–24. Retrieved from

Mikelsons, G., Smith, M., Mehrotra, A., & Musolesi, M. (2017). Towards deep learning models for psychological state prediction using smartphone data: Challenges and opportunities. Conference on Neural Information Processing Systems. Retrieved from

Miller, G. (2012). The smartphone psychology manifesto. Perspectives on Psy- chological Science, 7 (3), 221–237. doi:10.1177/1745691612441215

Montavon, G., Samek, W., & Müller, K. R. (2017). Methods for interpreting and understanding deep neural networks. Digital Signal Processing: A Review Journal, 73, 1–15. doi:10.1016/j.dsp.2017.10.011

Murphy, K. P. (2012). Machine learning: A probabilistic perspective. Cambridge, MA: MIT Press. doi:10.1007/978-94-011-3532-0_2

Nair, V. & Hinton, G. E. (2010). Rectified linear units improve restricted Boltz- mann machines. International Conference on Machine Learnning, (3). doi:

Nielsen, M. A. (2015). Neural Networks and Deep Learning. Determination Press. Retrieved from

Pascanu, R., Mikolov, T., & Bengio, Y. (2013). On the difficulty of training recurrent neural networks. Retrieved from

Pereira, F., Mitchell, T., & Botvinick, M. (2009). Machine learning classifers and fMRI: A tutorial overview. NeuroImage, 45, S199–S209. doi:10.1016/j.neuroimage.2008.11.007

Ripley, B. D. (2005). Pattern recognition and neural networks. Cambridge, UK: Cambridge University Press.

Sonoda, S. & Murata, N. (2017). Neural network with unbounded activation functions is universal approximator. Applied and Computational Harmonic Analysis, 43 (2), 233–268. doi:10.1016/j.acha.2015.12.005

Suhara, Y., Xu, Y., & Pentland, A. S. (2017). Forecasting depressed mood based on self-reported histories via recurrent neural networks. International World Wide Web Conference Committee, 715–724.

Taylor, S., Jaques, N., Nosakhare, E., Sano, A., & Picard, R. (2017). Personalized multitask learning for predicting tomorrow’s mood, stress, and health. IEEE Transactions on Affective Computing, (99). Retrieved from https://affect.

Wu, S., Harris, T. J., & Mcauley, K. B. (2007). The use of simplified or misspec- ified models: Linear case. The Canadian Journal of Chemical Engineering, 85 (4), 386–398. doi:10.1002/cjce.5450850401

Yarkoni, T. (2010). Personality in 100,000 words: A large-scale analysis of per- sonality and word use among bloggers. Journal of Research in Personality, 44 (3), 363–373. doi:10.1016/j.jrp.2010.04.001

Yarkoni, T. (2012). Psychoinformatics: New horizons at the interface of the psychological and computing sciences. Current Directions in Psychological Science, 21 (6), 391–397. doi:10.1177/0963721412457362

Yarkoni, T. & Westfall, J. (2017). Choosing prediction over explanation in psychology: Lessons from machine learning. Perspectives on Psychological Science, 12 (6), 1100–1122. doi:10.1177/1745691617693393


Журавлев А.Л. Психология совместной деятельности. М.: Изд-во «Институт психологии РАН», 2005.- 640 с. ISBN: 5-9270-0039-8

В.П. Поздняков В.П., Вавакина Т.С.. Психология делового партнерства: теория и эмпирические исследования. -М.: Изд-во «Институт психологии РАН», 2016.-320 с. ISBN 978-5-9270-0331-0

Т.В. Андреева Т.В. Психология современной семьи. Спб, Речь, 2005.-436 с. ISBN 5-9268-0376-4

Обозов, Н.Н. Психология межличностных отношений. – Киев : Лыбидь, 1990. – 192 с. – ISBN 5-11-001480-9.

Обозов Н.Н.,Обозова А.Н. Три подхода к исследованию психологической совместимости. Вопросы психологии, 1981 6 , 98- 101

Гашпар В.Э., Гашпар Ю.Э., Карев П.В. Метод ранней диагностики сексуальной совместимости. «Мир сексологии», 2016. №11

Россиев Д.А., Винник Н.Г. Предсказание «удачности» предстоящего брака нейросетевыми экспертами. // Нейроинформатика и ее приложения: Тезисы докладов II всероссийского рабочего семинара, 7-10 октября 1994 г. — Красноярск, 1994. — с.45.

Murstein, B. I. (1970). Stimulus value role: A theory of marital choice. Journal of Marriage and the Family, 1970, 32(3), 465-481

Orchard G. Neural network research and applications in psychology. The Irish Journal of Psychology, Vol. 16, 1995 - Issue 4 Pages 389-396

Арзамасцев А.А., Зенкова Н.А. Моделирование в психологии на основе искусственных нейронных сетей. Тамбов: ИМФИ ТГУ м. Г.Р.Державина, 2003

Gorban A. N., Rossiyev D. A., Dorrer M. G. MultiNeuron — Neural Networks Simulator For Medical, Physiological, and Psychological Applications // Wcnn’95, Washington, D.C.: World Congress on Neural Networks, 1995. International Neural Network Society Annual Meeting : Renaissance Hotel, Washington, D.C., USA, July 17-21, 1995.

Сысенко В. А. Устойчивость брака: Проблемы, факторы, условия. М.: Финансы и статистика. 1981, - 199 с.

Славутская Е.В., Славутский Л.А. Использование искусственных нейронных сетей для анализа гендерных различий младших подростков // Психологические исследования. 2012. Т. 5, № 23. С. 4. URL:

Хайкин С. Нейронные сети: полный курс. пер. с англ. 2-е изд. = Haykin S. Neural Networks: A Comprehensive Foundation. 2-е изд. — М.: Вильямс, 2006. — 1104 с. — ISBN 0-13-273350-1.

Губерман Т.А., Ямпольский Л.Т. Применение алгоритмов распознавания образов в психодиагностике // Вопросы психологии, 1983 №5. — с.118-125.

Modai I., Stoler M., Inbar-Saban N. et al. Clinical decisions for psychiatric inpatients and their evaluation by a trained neural network // Methods Inf. Med. — 1993 — v.32, №5. — p.396-399.

Доррер М.Г. Обработка психологической информации при помощи нейронных сетей. // Проблемы информатизации региона: Материалы второй межрегиональной конференции. Красноярск: КГТУ, 1997. — с.33-43.

Dorrer M.G., Gorban A.N., Zenkin V.I. Neural networks in psychology: classical explicit diagnoses // Neuroinformatics and neurocomputers, Proceedings of the 2nd RNNS-IEEE Symposium, Rostov-on-Don, September 1995 — pp 281-284

Dorrer M.G., Gorban A.N., Kopytov A.G. Zenkin V.I. Psychological intuition of neural networks // Proceedings of the World Congress on Neural Networks’95, Washington DC, July 1995. P. 193–196.

Starzomska M. Use of artificial neural networks in clinical psychology and psychiatry. Psychiatria Polska, 2003, Mar-Apr;37(2):- P. 349-357

Боровиков В.П. Нейронные сети. Методология и технологии современного анализа данных / под. ред. В.П.Боровикова. М.: Горячая линия-Телеком, 2008

Rowe PM. Neural networks: a bridge between neuroscience and psychology. Molecular Medicine today 1995 Jul;1(4):168-173.

Chandrasekaran A.B., Megha M., Sweetlin H. An Automated Compatibility Prediction Engine using DISC Theory Based Classification and Neural Networks. International Journal of Engineering, Technology, Science and Research. Volume 4, Issue 8, 347-353 , August 2017, ISSN 2394-3386

Grossberg, Stephen. Neural Networks and Natural Intelligence. Cambridge, MA: MIT Press, 1988.

Baxt W.G. Complexity, chaos and human physiology: the justification for non-linear neural computational analysis // Cancer Letters. 1994. Vol. 77, No. 2–3. P. 85–93.

Buss, D. M., & Barnes, M. (1986). Preferences in human mate selection. Journal of Personality and Social Psychology, 50(3), 559.

Young, J. A., Critelli*, J. W., & Keith, K. W. (2005). Male age preferences for short-term and long-term mating. Sexualities, Evolution & Gender, 7(2), 83–93.

Feingold, A . Gender differences in personality: A meta-analysis. Psychological Bulletin. 1994, 116: 429–456.

Buunk, B. P., Dijkstra, P., Kenrick, D. T., & Warntjes, A. (2001). Age preferences for mates as related to gender, own age, and involvement level. Evolution and Human Behavior, 22, 241-250

Kenrick, D. T., & Keefe, R. C. (1992). Age preferences in mates reflect sex differences in human reproductive strategies. Behavioral and Brain Sciences, 15, 75-133.